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Abstract — Rules for transmission zero movement in real
circunit cross-coupled filters and a classification of two pri-
mary transmission zero types are given. The rules and classi-
fications apply to filters of arbitrary bandwidth and give
insight into response skewing and “disappearing” zeros.
Transmission zero sensitivity and performance limitations are
described and related to circuit topology and coupling ele-
ment types.

1. INTRODUCTION

The use of coupling between non-adjacent resonators
{cross-coupling) in bandpass filters is well established, and
virtually every combination of inter-resonator couplings
has been investigated. The tuning of such filters and an
explanation of why a filter response behaves the way it
does can appear to be quite confusing. This is especially
true when comparing cross-coupled designs with cascade
realizations for which independent control of each trans-
mission zero is usually obvious from the circuit topology.
The situation becomes even more difficult to understand as
filter bandwidth increases. Narrowband prototype circuiis
no longer accurately describe how real circuits will per-
form and inaccuracies caused by use of such prototype
circuits can be substantial, even at relatively narrow band-
widths.

II. TRANSMISSION ZERO MOVEMENT RULES AND
CLASSIFICATION OF ZEROS

The behavior of arbitrary bandwidth cross-coupled fil-
ters for which we have a realistic circuit model can be in-
vestigated and better understood by considering how cir-
cuit transmission zeros move as elements are perturbed. A
definition of a perturbed element can include the creation
of an element that did not previously exist, i.e. it’s value
having been perturbed from zero or infinite value. Trans-
mission zero movement in real circuits obey the following
three rules:

RULE 1. All transmission zeros occur with quadrantal
symmetry in the complex plane.

RULE 2. Perturbing an element causes transmission
zeros to move in continuous paths, i.e. they never jump
to a new location.

RULE 3. Perturbing an element never causes related
transmission zeros to follow one another, i.e. they move
closer together or further apart, but not in the same
direction.

In addition to the above rules of movement, transmission
zeros can be of two movement types:

Type 1. Zeros restricted to real frequencies.

Type 2. Zeros that can be at real or complex frequen-
cies.

In any given circuit, the zero movement type is determined
by the circuit topology and specific circuit elements.

III. EXAMPLES

For illustration, consider the four resonator inductively
coupled bandpass filter circuit of Fig. 1(a). This circuit has
eight transmission zeros, seven at « = infinity and one at
o = (. The simplest Type 1 real frequency zero occurs if
we place a capacitor in parallel with any of the coupling
inductors as shown in Fig. 1(b) giving a cascade realiza-
tion, This zero is locked on the real frequency axis, and
cannot move off the axis with perturbation of existing fi-
nite elements. Next consider adding an inductor from
resonator 1 to 3 to the circuit of Fig. 1(a) giving the circuit
of Fig. 1(c). This creates the well known high side triplet,
and gives a Type 1 transmission zero above the passband.
We know it is a Type | transmission zero by examining
the transmission zero structure before and after the ele-
ment was added (perturbed). We started with seven at in-
finity and one at zero. The circuit of Fig. 1(c) has five at
infinity and one at zero leaving just two to be accounted
for. By Rule 1 the zeros must be either on the sigma axis
or the jw axis. By analysis or the fact that we know that the
circuit can produce a high side zero, the zeros must be on
the jo axis. As with the cascade circuit, the zeros are
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Fig. 1. Four rescnator inductively coupled bandpass filter

example circuits.

locked on the jo axis independent of perturbation of any
finite existing element.

Next consider adding a capacitor from resonator 1 to 3
to the circuit of Fig. 1(a) giving the circuit of Fig. 1(d).
This is the well known low side triplet circuit. These zeros
are of Type 2, and may or may not appear at real frequen-
cies. Examining transmission zeros, we started with seven
at infinity and one at zero. Adding the bridging capacitor
we have three at infinity and one at zero leaving four un-
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Fig. 2. Movement of transmission zeroes for the circuit in Fig.
1(d). The zeroes move in from infinity, reach the jo axis then
split into two zeros that move on the jo axis according to Rule 3,

accounted for. From Rules 1-3 and the fact that we know
that the circuit can have a low side transmission zero, the
only possibility is that the zeros break from infinity as a
complex quadruplet. For small values of the bridging ca-
pacitor, no transmission zero will appear at any real fre-
quency. As the value of the bridging capacitor is increased,
and other elements are modified to maintain say equal
ripple response, the transmission zeros move as shown in
Fig. 2, ultimately reaching the jow axis, and then splitting to
produce two zeros that move on the jo axis in accordance
with Rule 3. From a study of the above movement, it has
been found that the frequency at which the two zeros ap-
pear doubled up on the jw axis is relatively independent of
filter design parameters such as ripple value and band-
width. For a lumped element circuit this “break frequency”
(BF} is approximately 0.7f,, where fg is the filter center
frequency. As filter bandwidth is increased, this near con-
stant BF causes the achievable stopband lobe level to de-
crease. Stopband rejection is highly sensitive to filter tun-
ing whenever the transmission zeros are near the BF. With
narrowband filters, the BF for a lowside transmission zero
is quite far from the passband, and the transmission zeros
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Fig. 3. Movement of transmission zeros for the well known

quad circuit, Fig. 1(e), and the resulting insertion loss plots for
the three noted transition zero locations,

are often widely split such that the second lowside zero is
far below the close in zero.

Next consider the circuit of Fig. 1(a) in which we add a
capacitor from resonator 1 to 4 as shown in Fig. 1(e). This
is the well known quad circuit used to produce a transmis-
sion zero on both sides of the passband. Counting trans-
mission zeros, after adding the bridging capacitor we have
one at 0= infinity and one at @ = 0 and six unaccounted
for. When the capacitor is added, a Type 1 zero appears on
the jo axis above the passband, and a Type 2 quadruplet
appears in the complex plane below the passband. As the
bridging capacitor is increased in value (and the other ele-
ments are adjusted to give say equal ripple passband re-
sponse), the Type 1 zero moves down the jo axis toward
the passband, and the Type 2 quadruplet moves toward the

TABLE 1
SUMMARY OF SAMPLE LOBE LEVELS

Break Upper Low High
BW | Frequency | Transmission | Lobe Lobe
(GHz) Zero (GHz) Level Level
1% 0.624 1.114 -156dB | -114dB
2% 0.624 1.114 -132dB | -50dB
5% 0.624 1,116 -98dB -59dB
10% 0.623 1.122 -74dB -35dB
20% 0.615 1.145 -50dB | -13.5dB
30% 0.597 . 1.179 -38dB -4.7dB

jo axis, ultimately reaching the axis at the BF. The low
side pair then split as in the case of the low side triplet.
The movement of the transmission zeros and the corre-
sponding insertion loss response is shown in Fig. 3. As
with the triplet low side zeros, the BF for the quad circuit
has been found to be relatively independent of filter band-
width and ripple value. The low side zeros are also highly
sensitive to element tuning when they are near the BF. The
frequency location of the high side zerc when the low side
zeros are at the BF is also relatively independent of filter
bandwidth and ripple value, and is much closer to the
passband than is the BF. The above behavior limits the
stopband lobe levels that can be obtained with transmis-
sion zeros appearing on both sides of the passband. It also
results in substantial skewing of the response as the low
side BF and corresponding upper stopband zero are highly
skewed about f,.

The above results also hold for the case of distributed
resonators with lumped or distributed loading. For exam-
ple, with 45 degree combline resonators at 1GHz, lumped
capacitor loading, and a 26dB, N = 4 equal ripple return
loss response, the low side BF is at about 0.624GHz when
the high side zero is at about 1.12GHz, relatively inde-
pendent of filter bandwidth and ripple value. Obviously for
say 30% bandwidth, the upper zero must be above
1.12GHz for equal ripple passband response, but even at
30% bandwidth the lowside BF is at about 0.6GHz and the
upper zero is at 1.18GHz. The stopband lobe levels for the
above 30% bandwidth case when the lowside zeros are at
the BF are 38dB in the lower lobe and 4.7dB in the upper
lobe. Table I gives a summary of sample lcbe levels
achievable for the above N = 4 case versus bandwidth
when the low side zeros are at the BF.

As more non-adjacent resonator couplings are added to
filter circuits we can gain more real frequency transmis-
sion zeros. However such zeros tend to be Type 2 zeros
rather than Type 1 zeros, and are thus more sensitive to
filter tuning. As an example, assume that we add inductive
coupling from resonators 1 to 3 and from 1 to 4 to the cir-
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Fig. 4. Quad circuit with capacitive mainline coupling (a) and
insertion loss / return loss responses (b).

cuit of Fig. 1(a) giving what we will call the “complex
quad” circuit of Fig. 1(f). This gives three zeros at w=
infinity, one zero at «w = 0, and four unaccounted for. From
a previous example we know that if 114 was infinite and
L13 was finite, we would have a Type 1 zero on the jo
axis. As L.14 becomes finite, from Rule 1, the zeros must
maintain quadrantal symmetry. From Rule 2 the required
four zeros cannot jump to a complex plane quadruplet.
Thus from Rule 3, a new zero must appear on the jo axis
and move toward the passband while the existing close in
zero must move away from the passband toward the new
zero. As we adjust the values of L13 and L14 (along with
other elements to say maintain equal ripple performance),
we can place the two zeros at any desired frequencies. In
narrow band filters, we tend to place these zeros close to
the passband and often close to each other. If we place
them at the same frequency we find that we are at the BF
for a complex quad of zeros. At this point, slight resonator

tuning or coupling adjustment can cause the zeros to split
on the axis, or go into the complex plane and “disappear.”
The “complex quad® circuit of Fig. 1(f) is often used with
transmission zeros that are near the BF. It tends to be more
sensitive, even for very narrowband applications, than trip-
let and simple quad circuits which have Type 1 zeros and /
or Type 2 zeros that are widely split in frequency (far from
the BF).

As a final example, assume we would like to realize a
cross-coupled 30% bandwidth simple quad with transmis-
sion zeros on both sides of the passband and a stopband
lobe level of -40 dB. The inductive coupled configuration
of Fig. 1(e) is useless for such a design. To get a practical
solution, consider the circuit of Fig. 4(a) in which we sim-
ply change the 2-3 inductive coupling to capacitive, and
the 1-4 capacitive coupling to inductive. This circuit has
three zeros at ¢ = infinity, one at w = zero, and two Type 1
zeros, one above and one below the passband. These zeros
are locked on the jw axis and will always be present inde-
pendent of existing element perturbation. The response of
a lumped element design is shown in Fig. 4(b). While not
perfectly symmetric, the response is quite respectable, of
relatively low sensitivity, and far superior to the more
common simple quad circuit of Fig. 1(e).

IV. CONCLUSION

The behavior of real circuit cross-coupled filters of arbi-
trary bandwidth has been described in terms of transmis-
sion zero location and movement. Rules of transmission
zero movement have been given, and transmission zeros
have been classified as being of two distinct movement
types. The techniques described have been illustrated by
means of simple well known triplet and quad circuits.
However, these techniques can be applied to much more
complex circuits, and are useful for understanding per-
formance limitations and tuning sensitivity of real circuits,
Improved performance by proper choice of coupling ele-
ment type was also illustrated, and is of increasing impor-
tance as filter bandwidth increases.
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